19.05.2003

Specification of secure electronic communication between
organisations in the insurance sector

(Version 1.1)

Version 1.1 Page 1 of 25

o0 J O\

19.05.2003

INEEOAUCTION ...ttt et e eb e et e bt e et esbtesabeesbbeeabeesbbeebeesabeenbeenns 3
1.1 BacK@IroUNdc..oiiiiiiiieee ettt sttt e 3
1.2 PUIPOSE. ..ttt ettt e e ettt e e et ee s ettt e e e s bt e e e s e aatteeeentaeeeeenbaaeeeannraeas 3
1.3 INOTALION. ...ttt ettt st et e sa e et esat e et esae e et e e s bt e e bt e sbe e et e e saeeeaneesaeeeneenaneenne 3
1.4 Management of the SPECIfICAtIONccuiieiiiiiiiieeieeeee e e e e e e e eaae e 4
1.5 Versions and backwards COMPatiDIlItyccocveeiiiiiiiiiiiiniieeie e 4
1.6 AffIl1ated OTZaANISALIONS. ..cuviieiiiieeiiieeeiee et e ettt e e teeeeteeeebeeesateeesbeessaeeensaeesnsaeessseeessseeensseeensseens 4
1.7 STANAATAS ..ottt ettt sttt et s naees 5

COMMUNICATION ...ttt ettt et e sa e et esa e e bt e sht e e st e e sabeeabeeshbeeabeesbbeeabeesbbeenbeesnbeeabeenaneenne 6
2.1 CommuUuNICAION FLOWeoiiiiiiiiiiiiieecee ettt s 6
2.2 An error in the commuNICation flOW........cooiiiiiiiiiiiiiiee e 8
2.3 HandIing TXIAcoouiieiiee ettt ettt e st e st e e et e e sabeeeaeees 8

2.3.1 The sender’s 1eSPONSIDIIIESviieriieeiiieeeiee ettt e e e e ereeeeaaeeenaneeens 8

2.3.2 The receiver's reSPONSIDIIITIEScccruviiiriiiiiiiieiiieeeiieeet ettt e e 8

IMLESSAZES .eeeuuevteeeeiittee e ettt e e ettt e e ettt e e ettt e e s eaaat e e e e atateeeaaa b beeeeeasbt e e e ettt e e e e bt e e e eanttaee e e nbaeeeeannbaeeennnees 9
3.1 INAIMESPACES. ..ttt ettt ettt ettt ettt ettt e ettt e ettt e et e e ettt e sabeeeeabee e st e e sabbeesabbeesabaeesabeeesabeesnnneesnneas 9
3.2 PN Fe 0] w11 1 0 LSRR 9
3.3 Certificates 1N SIZNEA MESSAZES ...vvveerurieeriieeriiieeiieeerteeertee ettt e et e e sbteesbeeesbeeesabeeesibeessaneesnnseas 9
3.4 Technical MeSSAZE NEAUCT.........cccuiieiiiieiiiieciee ettt et e e e e et e e sbee e enreeesaveeenseas 10
3.5 RECEIPLS -ttt ettt et e e bt e et e st e e st e e sabe e e s eeeabee e 11
3.6 N TeT2 oI 10| L OSSR 13
3.8 Example of an unsigned qUETY MESSAZEccevuveerriiiiriieeiiieeriieeriieeeieee st e e et e et eesibee e 15

SEOUTTLY +vtieeeitie ettt ettt ee et ee ettt e ettt e et e e e aeeeestaeessseaeasseeesseeessaeansseeanssaeassseeassaeensseeensseesnnseesnnseeens 16
4.1 SECUIILY LEVELS ..ottt ettt ettt e sttt e st e e st e e sab e e e sabeesnabeesneeas 17
4.2 SECUIE COMMUNICATION ...ttt ettt ettt et ettt et e e e shbe et e esbbeeabeesateenbeesaeeeabeesaaeenne 17
4.3 STEIINZ ettt ettt ettt e ettt e s ab e e et e e e bt e e eabbeesabbeesabte e e bt eeeabteeeabeeeeabeeenreas 18
4.4 CAS AN COTLIICALES ..ottt ettt et e sttt e st e bee e 18
4.5 ReVOKING Of CEITIICALES ..couuviiiiiiiiiieii ettt et 18
4.6 Approved CAs and CertifiCate tYPESveeruieerieeeriieeiieeeiieeereeeireeeteeestreesbeeesbeeesnreesnseeennns 19
4.7 Handling private KEYScoouieiiiiiiiieiie ettt ettt et e e 19

PaN 07050 10 B QA NN 71116 1« KRS 20

Appendix B Web Services SECUTILYcciiiiiiiiiiiiiieeiie ettt ettt 21

Appendix C SSEK-Specific SCREMEScccueieiiiieiiiieiie ettt e e 22

APPendix D Fault COUES.eiiiiiiiiiiiie ettt ettt e e 24
8.1 Faults concerning the dOCUMENLTc.cooiiiiiiiiiiiiieeieeciee e e eaee e 24
8.2 Faults concerning the transaction IDcccooiiiiiiiiiiiiie e 24
8.3 Faults on the SEIVET SIAC........c.eiiuiiiiiiieii ettt 24
8.4 Logical faults in tranSaction dataceeeriuieiriiiiniieeieeeiteeetee ettt et e e 24
8.5 Faults concerning certificates Or SIZNATUTEScccveeeiuieeriiieerieeerteeerieeeireeeteeesaeeesseeensseesnnne 25
8.6 Other faults which are not reported via SOAP fault...........coooiiiriiiiniiiiniiieeee 25

Version 1.1 Page 2 of 25

19.05.2003

Version Date Description
V.1.0 10.09.2002 | Original version
V.1.1 28.04.2003 | - Restructuring of the specification

- Defined security levels

- Registered namespace, ssek.org. for the scheme
- Adaptation of SSEK to WS-Security

- Defined receipt

- Defined TxHeader

- Support for version management of SSEK
through namespace on TxHeader

- Defined error management through soap fault

1. Introduction

1.1 Background

SSEK (“Specifikation av sédker elektronisk kommunikation mellan aktorer i forsdkringsbranschen”, in
english “Specification of secure electronic communication between organisations in the insurance
sector’’) fulfils the business need for a standard for secure electronic communication in the insurance
sector. By following the specification, organisations will reduce the risk of having to build up several
different communication solutions or of insecure communication solutions being constructed.

1.2 Purpose

This document is a specification of how electronic communication should be carried out securely over
the Internet. The document is ideal for use as underlying information and could be included in
agreements concerning how communication should be carried out between one’s own organisation and

another organisation.

1.3 Notation

In this document, the keywords SHOULD, CAN, MUST and MUST NOT have the following meaning.

Keyword Meaning

SHOULD The text being referred to is recommended but is
not a requirement for fulfilling the specification.

CAN The text being referred to can be used if the
transactions require it but it is not a requirement for
fulfilling the specification.

MUST The text being referred to is a requirement for
fulfilling the specification.

MUST NOT The text being referred to is not permitted under the
specification.

Version 1.1

Page 3 of 25

19.05.2003

1.4 Management of the specification

SSEK is being managed with the SFM (“Svenska Forsdkrings Méklares forening”, in english “the
Swedish Insurance Brokers’ Association”). The group that is handling the publication of the
specification has representatives from the organisations Skandia Liv, SEB Trygg-Liv, Lansforsdkringar,
Alecta, Aspispronia, Danica, Folksam, SPP and SFM.

1.5 Versions and backwards compatibility

This specification is not static and may be amended in order to adapt it to new or amended standards,
e.g. concerning signature management. Implementations of the specification must be able to handle
different versions of the specification by programmatically determining the version of SSEK for a
particular incoming message. This is handled through giving TxHeader a new namespace for each
version of SSEK, where the changes are such that they affect the implementations. This applies
regardless of whether or not the actual content or structure of TxHeader has been altered.

For version 1.1 of the SSEK, the following namespace applies for TxHeader:
http://schemas.ssek.org/txheader/2003-04-03/

For any future version 1.2 of SSEK the namespace for TxHeader could be:
http://schemas.ssek.org/txheader/2004-01-12/

1.6 Affiliated organisations

The organisations that have adopted the specification have decided to communicate electronically in
accordance with the SSEK and have a completed platform for SSEK or are in the process of developing
such a platform. It will therefore be possible for communication with affiliated organisations to be
carried out after a commercially acceptable period of time by both parties.

We (the group for SSEK within SEFM) also naturally encourage organisations that have not adopted the
specification to use the SSEK for secure electronic communication.

The following organisations have adopted SSEK.
e Skandia Liv

¢ SEB Trygg-Liv

¢ Liansforsdkringar

Version 1.1 Page 4 of 25

19.05.2003

1.7 Standards

This document, SSEK, describes what electronic communication between parties in the insurance sector
should look like. SSEK is based on a number of existing standards, specifications and recommendations
from acknowledged standardising bodies such as IETF (Internet Engineering Task Force), W3C (World
Wide Web Consortium) and OASIS (Organisation for the Advancement of Structured Information
Standards).

For information on which standards SSEK is based on, see Appendix A Standards and Appendix B Web
Services Security.

The standards and specifications that are listed in Appendix A Standards are fully covered by SSEK with
the exception of WS-Security (Web Services-Security) and therefore also XMLSignature, where
selected parts are used in accordance with Appendix B Web Services Security.

Like SSEK, WS-Security is based on a collection of standards and describes how electronic
communication is carried out securely. SSEK is however direct adapted to the needs for electronic
communication in the insurance sector. Only the parts of the WS-Security specification for which there
is a commercial need are therefore used.

A major advantage of supporting parts of WS-Security is that the products that are developed with

support for WS-Security can be used. SSEK messages can therefore be created and handled using the
frameworks that following the WS-Security specification.

Version 1.1 Page 5 of 25

19.05.2003

2 Communication

In connection with electronic communication, the flow MUST be specified between the communicating
parties. This section describes the flow of communication for synchronous and asynchronous
communication.

All communication in accordance with SSEK takes place synchronously with a query message and a
reply message in the form of SOAP messages. An asynchronous flow can be achieved by combining
two synchronous transmissions. To separate the synchronous transmissions in an asynchronous flow, we
will hereafter refer to these as the request and the result. In order to link together an asynchronous flow,
1.e. connecting the request to the result, TxId is used in accordance with 3.4 Technical message header.

2.1 Communication flow

The following diagram and description show how the flow MUST look in the case of synchronous
communication when a signature is used. The signature is not essential but is used depending on the
business requirement.

Query message

Signed
Request

Reply message

Signed
Result

Soap fault

1. Party A sends a signed query message for a request to Party B.

2. Part B verifies the signature and the format in the query message, processes the message and returns
a signed result that describes how the processing went. In the event of an error that is discovered in
connection with the reception, a soap fault message is returned in accordance with section 3.6 Soap
fault.

A

Version 1.1 Page 6 of 25

19.05.2003

The following diagram and description show how the flow MUST look in the case of asynchronous
communication when a signature is used. The signature is not essential but is used depending on the
business requirement.

Query message

Signed
Request

Reply message

Signed
Receipt
Party A
y Soap fault 2

\ Query message
Signed

3 Result
Reply message
Signed
4 Receipt
Soap fault

—

Party A sends a signed query message with a unique TxId for a request to Party B.

Party B returns a signed receipt after having verified the signature and the format in the query

message. Party A have then received proof that Party B has received the message. Note that

Party B has not given any guarantees that the message in the query message can be processed. In

the event of an error in connection with the reception, a soap fault message is returned in

accordance with section 3.6 Soap fault.

3. After having processed the request, Party B sends a signed query message with the original TxId
and a result that describes how the processing went to Party A.

4, Party A links the result to the request using the TxId (see section 3.4 Technical message header)

and returns a signed receipt after having verified the signature and the format in the result

received from Party B. In the event of an error in connection with receiving, a soap fault message

is returned in accordance with section 3.6 Soap fault.

N

Version 1.1 Page 7 of 25

19.05.2003

2.2 An error in the communication flow

Situations can arise where there is uncertainty concerning whether a query message has been received or
processed. This can for example arise if the secure channel (the SSL tunnel) goes down after the receiver
has received a query message but before the sender has received a reply message. In this situation, the
sender of the query message may not know whether the receiver has received the query message.

If such a situation arises, the sender of the query message MUST contact the receiver to determine
whether the message has been processed. The sender MUST NOT send the message again until he or
she has contacted the receiver.

Despite the fact that no receipt has been received by the sender, the receiver of a query message can
process the message and send a result and receive a receipt for the result. If this is a service which is
defined by the fact that archiving must be carried out, the sender of the request in this situation will have
an incomplete transaction in his or her archive. There will be no receipt for the request. When requested
to do so by the other party, the receiver of the query message MUST send such a receipt so that both
parties can archive the complete transaction.

When the sender has contacted the receiver and it is apparent that the query message for the request has
not been processed or received by the other party, the sender MUST generate a new unique TxId and
send the message again.

2.3 Handling TxId

Based on the above paragraph, the following MUST apply to the sender and the receiver of a query
message.

2.3.1 The sender’s responsibilities

The sender of a query message for a request is responsible for generating a unique TxId. In the event of
uncertainty as to whether the message has been received by the other party, the sender MUST contact
the other party in order to determine the status of the transaction.

2.3.2 The receiver's responsibilities

The receiver of a message is responsible for checking whether the incoming TxId is unique. In the event
of a duplicate, the receiver MUST return a soap fault message with a fault code
“Client.TxHeader.TxId.Duplicate”. In the case of asynchronous processing, the receiver is responsible
for ensuring that TxId flows unaltered throughout the entire transaction.

Version 1.1 Page 8 of 25

19.05.2003

3 Messages

Messages in communication in accordance with SSEK follow the standard SOAP 1.1.

3.1 Namespaces
The following namespaces MUST be used when creating messages in accordance with SSEK.

Prefix Namespace Used in connection
with:

Soap http://schemas.xmlsoap.org/soap/envelope/ All cases

Txh http://schemas.ssek.org/txheader/2003-04-03/ All cases

Wsu http://schemas.xmlsoap.org/ws/2002/07 /utility Signing

Wsse http://schemas.xmlsoap.org/ws/2002/07/secext Signing
http://www.w3.0rg/2000/09/xmldsig# Signing

R http://schemas.ssek.org/receipt/2003-04-03/ Receipt

The prefix is used here to clarify the example in the document.

3.2 Algorithms

The following algorithms are used in this document. These algorithms MUST be used.

Use Algorithm

CanonicalizationMethod http://www.w3.0rg/2001/10/xml-exc-c14n#
SignatureMethod http://www.w3.0rg/2000/09/xmldsig#rsa-shal
Transform http://www.w3.0rg/2001/10/xml-exc-c14n#
DigestMethod http://www.w3.0rg/2000/09/xmldsig#shal

3.3 Certificates in signed messages

In signed messages, the certificate that is used to create the signature MUST be attached to the message
in accordance with the specification for WS-Security, see Appendix B Web Services Security. The
attached certificate can be used by the receiver to validate the signature. The receiver of a signed
message SHOULD check that the attached certificate is correct.

Version 1.1 Page 9 of 25

19.05.2003

3.4 Technical message header

All messages MUST include a message header with technical information, TxHeader, in accordance
with the scheme in Appendix C SSEK-specific schemes with the following namespace:
http://schemas.ssek.org/txheader/2003-04-03/.

The purpose of this information is to control the messages, handle asynchronous communication and
obtain a manageable log of communicated documents.

Field name Description Attribute
Senderld ID of the sender of the Type: type of identity
document. which is used for the sender
of a message
Receiverld ID of the recipient of the Type: type of identity
document. which is used for the
receiver of a message
TxId UUID (Universal Unique
Identifier in accordance
with DCE).
Timestamp Time when the message

was created in accordance
with the form yyyy-mm-
ddThh:mm:ss, where T is
constant.

The TxId in the message header is primarily used to keep an asynchronous transaction together. TxId is
not obligatory but MUST be agreed between the communicating parties for each service based on the
business need.

The type of identity that is used for Senderld and Receiverld MUST be agreed between the
communicating parties. The types which can be used are defined by the scheme for Txheader and are
explained in the table below:

Value Explanation

APP Application name, can be own clients where traceability is required
concerning the application that was used.

CN Common Name, obtained from the client certificate.

DN Distinguished Name, the entire name for the client certificate.

ORGNR Organisation number

An example of a technical message header, TxHeader, is given below:

<txh:TxHeader soap:mustUnderstand="1" xmlIns:txh="http://schemas.ssek.org/txheader/2003-04-03/">
<txh:Senderld txh:type="CN">Company A</txh:Senderld>
<txh:Receiverld txh:type="CN">Company B</txh:Receiverld>
<txh:TxId>C61B0B07-EF5F-46a1-92B4-6E5FA574E46E</txh:TxId>
<txh:Timestamp>2003-03-27T12:50:00</txh: Timestamp>
</txh:TxHeader>

Version 1.1 Page 10 of 25

19.05.2003

3.5 Receipts

The purpose of a receipt is to enable the sender to be certain that the query message has been received
by the receiver. A receipt MUST be used in connection with asynchronous communication when a
message is received and approved for processing by the receiver. However, a receipt does not guarantee
that the information in the received message will be processed without any errors.

In connection with the acknowledgement of a signed message, the receipt MUST contain the signature
of the acknowledged message. The signature contains a representation of the original message in the
form of a hash value. Representation in the form of the signature from the received message can of
course only be used if the received message has been signed.

The receipt can also be used to announce the result of the processing synchronously. The scheme allows
company-specific information to be added.

The namespace for a receipt is http://schemas.ssek.org/receipt/2003-04-03/. See also the scheme in
Appendix C SSEK-specific schemes. The content is as follows:

Field name Description

ResponseCode Response code (OK)

ResponseMessage Response message, e.g. “The message has
been received and will be processed”

RequestSignatureValue The signature of the acknowledged
message.

An example of an unsigned receipt (for a request) is given below:

<soap:Envelope xmins:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<txh:TxHeader soap:mustUnderstand="1" xmIns:txh="http://schemas.ssek.org/txheader/2003-
04-03/">
<txh:Senderld txh:type="CN">Company B</txh:Senderld>
<txh:Receiverld txh:type="CN">Company A</txh:Receiverld>
<txh:TxId>C61B0B07-EF5F-46a1-92B4-6E5FA574E46E</txh:TxId>
<txh:Timestamp>2003-03-27T12:50:01</txh:Timestamp>
</txh:TxHeader>
</soap:Header>
<soap:Body>
<r:Receipt xmlins:r="http://schemas.ssek.org/receipt/2003-04-03/">
<r:ResponseCode>0K</r:ResponseCode>
<r:ResponseMessage>The message has been received and will be
processed</r:ResponseMessage>
<r:RequestSignatureValue>X10s6m3YReQJlk1IBzwvLe5hScdz09uBx4EhnJplKZVI2uSc
Mpj4FPnnyfIPBI3vkI59aPcbQlzqTEgaHBwiIpcwRNNnnOJ4tYeY3/HekPSIBFBO9pOFqh7
308qqK0v1/ZK2IYOBT/WBFNdYD6nf8gP8nSjAKUPXx1QFC8RCUKVeZk=</r:RequestSi
gnatureValue>
</r:Receipt>
</soap:Body>
</soap:Envelope>

Version 1.1 Page 11 of 25

19.05.2003

An example of a signed receipt (for a request) is given below:

<soap:Envelope xmins:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<txh:TxHeader soap:mustUnderstand="1" xmlIns:txh="http://schemas.ssek.org/txheader/2003-
04-03/" xmIns:wsu="http://schemas.xmlsoap.org/ws/2002/07 / utility"
wsu:Ild="txHeader">
<txh:Senderld txh:type="CN">Company B</txh:Senderld>
<txh:Receiverld txh:type="CN">Company A</txh:Receiverld>
<txh:TxId>C61B0B07-EF5F-46a1-92B4-6E5FA574E46E</txh:TxId>
<txh:Timestamp>2003-03-27T12:50:01</txh:Timestamp>
</txh:TxHeader>
<wsse:Security soap:mustUnderstand="1"
xmins:wsse="http://schemas.xmlsoap.org/ws/2002/07 /secext">
<wsse:BinarySecurityToken ValueType="wsse:X509v3" EncodingType="wsse:Base64Binary"
xmins:wsu="http://schemas.xmlsoap.org/ws/2002/07/ utility"
wsu:Ild="SecurityToken-aca9eb37-8bal-4ca4-8a98-
50df7b66b87f">MIICcjCCAdugAwIBAgIBAzANBgkqhkiGOwWOB...
</wsse:BinarySecurityToken>
<Signature xmIns="http://www.w3.0rg/2000/09/xmldsig#">
<SignedInfo>
<CanonicalizationMethod
Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#" />
<SignatureMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal" />
<Reference URI="#txHeader">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#" />
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmidsig#shal" />
DigestValue>9lvyLVeHMTWsmyPOtEvjaAAuNOw=</DigestValue>

</Reference>
<Reference URI="#soapBody">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#" />
</Transforms>

<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal" />
DigestValue>CTxmSaf2GFELSDEs7qkZES8PLWnNnO=</DigestValue>
</Reference>
</SignedInfo>
SignatureValue>bCTgHvWanAVpqTD9MCp1zK6AID7IDi6r18STI+4Mco...
</SignatureValue>
<KeyInfo>
<wsse:SecurityTokenReference>
<wsse:Reference URI="#SecurityToken-aca9eb37-8bal-4ca4-8a98-
50df7b66b87f" />
</wsse:SecurityTokenReference>
</KeyInfo>
</Signature>
</wsse:Security>
</soap:Header>
<soap:Body xmins:wsu="http://schemas.xmlsoap.org/ws/2002/07 /utility" wsu:Id="soapBody">
<r:Receipt xmins:r="http://schemas.ssek.org/receipt/2003-04-03/">
<r:ResponseCode>0K</r:ResponseCode>
<r:ResponseMessage>The message has been received and will be
processed</r:ResponseMessage>
<r:RequestSignatureValue>X10s6m3YReQJlk1JBzwvLe5hScdz09uBx4JplKZ...
</r:RequestSignatureValue>
</r:Receipt>
</soap:Body>
</soap:Envelope>

Version 1.1 Page 12 of 25

19.05.2003

3.6 Soap fault

In the event of an error occurring which can be notified synchronously for a query message, the receiver
MUST return a soap fault message with a fault code in accordance with Appendix D Fault codes. The
Soap fault message CAN be signed.

An example of an unsigned soap fault (for a request) is given below:

<soap:Envelope xmins:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<soap:Fault>
<soap:faultcode>Client.InvalidXml</soap:faultcode>
<soap:faultstring>Non valid XML</soap:faultstring>
<soap:detail>Element 'PNR' more than 12 digits</soap:detail>
</soap:Fault>
</soap:Body>
</soap:Envelope>

Version 1.1 Page 13 of 25

19.05.2003

3.7 Example of a signed query message

<soap:Envelope xmins:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>

<txh:TxHeader soap:mustUnderstand="1" xmIns:txh="http://schemas.ssek.org/txheader/2003-04-03/"
xmins:wsu="http://schemas.xmlsoap.org/ws/2002/07 /utility" wsu:Ild="txHeader">
<txh:Senderld>Company A</txh:SenderId>
<txh:Receiverld>Company B</txh:Receiverld>
<txh:TxId>C61B0B07-EF5F-46a1-92B4-6E5FA574E46E </txh:TxId>
<txh:Timestamp>2003-03-27T12:50:00</txh:Timestamp>
</txh:TxHeader>
<wsse:Security soap:mustUnderstand="1" xmins:wsse="http://schemas.xmlsoap.org/ws/2002/07 /secext">
<wsse:BinarySecurityToken ValueType="wsse:X509v3" EncodingType="wsse:Base64Binary" xmlIns:wsu="http:/
/schemas.xmlsoap.org/ws/2002/07 / utility" wsu:Id="SecurityToken-eda24e37-4bbc-4f9b-8e4b- C
ac0d40512623">MIICcjCCAdugAwIBAgIBAzANBgkqhkiGO9wWOBAQQFADBrM...
A </wsse:BinarySecurityToken>
<Signature xmins="http://www.w3.0rg/2000/09/xmldsig#">
<SignedInfo>
<CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#" />
<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal" />
<Reference URI="#txHeader">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#" />
</Transforms>
<DigestMethod Algorithm="http:/ /www.w3.0rg/2000/09/xmldsig#shal" />
<DigestValue>TkAmUwWhFKWf{7clANJziQEIEzO+Y=</DigestValue>
</Reference>
<Reference URI="#soapBody">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#" />
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal" />
<DigestValue>4UEX03CCZETWQzTIGHO90+cGKOE=</DigestValue>
</Reference>

</SignedInfo>

[<SignatureValue>e1mBDXu+IBhZGq1l0pGBE2FrEi3ViBWMXPDLKHX?2... </SignatureValue> | D
<KeyInfo>
<wsse:SecurityTokenReference>
<wsse:Reference URI="#SecurityToken-eda24e37-4bbc-4f9b-8e4b-ac0d40512623" />
</wsse:SecurityTokenReference>
</KeyInfo>
</Signature>
</wsse:Security>
</soap:Header> B
<soap:Body xmlIns:wsu="http://schemas.xmlsoap.org/ws/2002/07 /utility" wsu:Id="soapBody">
<m:Nyanm xmlIns:m="http://schemas.skandia.se/nyanm/2003-04-03/">
<m:Part>
<m:AGREENR>TJ00112233</m:AGREENR>
<m:PERSONS>
<m:PERSON>
<m:PNR>1212121212</m:PNR>
<m:FIRSTNAME>Kajsa</m:FIRSTNAME>
<m:SURNAME>Anka</m:SURNAME>
<m:ADDRESS>Ankeborgsvidgen 2</m:ADDRESS>
<m:POSTCODE>11111</m:POSTCODE>
<m:TOWN>Ankeborg</m:TOWN>
<m:COUNTRY>Disneyland</m:COUNTRY>
</m:PERSON>
</m:PERSONS>
</m:Part>
</m:Nyanm>
</soap:Body>
</soap:Envelope>

Arrow A points from the hash value of the header to the part that the hash value represents.

Arrow B points from the hash value of the document body to the part that the hash value represents.
Box C contains the certificate that was used to create the signature.

Box D contains the signature of SignedInfo.

The actual signature is therefore contained in SignatureValue, which signs the information in
SignedInfo, including the hash values which represent information in the document header and body.

Version 1.1 Page 14 of 25

19.05.2003

3.8 Example of an unsigned query message

An example is given below of an unsigned query message (for a request):

<soap:Envelope xmins:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header>
<txh:TxHeader soap:mustUnderstand="1" xmlIns:txh="http://schemas.ssek.org/txheader/2003-04-03/">

<txh:Senderld txh:type="CN">Company A</txh:Senderld>
<txh:Receiverld txh:type="CN"> Company B</txh:Receiverld>
<txh:TxId>C61BOB07-EF5F-46a1-92B4-6E5FA574E46E</txh:TxId>
<txh:Timestamp>2003-03-27T12:50:00</txh: Timestamp>
</txh:TxHeader>
</soap:Header>
<soap:Body>
<m:Nyanm xmiIns:m="http://schemas.foretagb.se/nyanm/2003-04-03/">
<m:Part>
<m:AGREENR>TJ00112233</m:AGREENR >
<m:PERSONS>
<m:PERSON>
<m:PNR>1212121212</m:PNR>
<m:FIRSTNAME>Kajsa</m:FIRSTNAME>
<m:SURNAME>Anka</m:SURNAME>
<m:ADDRESS>Ankeborgsvagen 2</m:ADDRESS>
<m:POSTCODE>11111</m:POSTCODE>
<m:TOWN>Ankeborg</m:TOWN>
<m:COUNTRY>Disneyland</m:COUNTRY>
</m:PERSON>
</m:PERSONS>
</m:Part>
</m:Nyanm>
</soap:Body>
</soap:Envelope>

Version 1.1 Page 15 of 25

19.05.2003

4 Security

As the information which is being communicated is sensitive and valuable, there is a need to prevent
unauthorized persons from reading or manipulating the information. There may also be a need to trace
information to the sender.

In order to fulfil the above requirements, SSEK describes how the following security aspects are handled
in connection with electronic communication.
e Authentication

Identification of the sending organisation (client) and the receiving organisation (server).
o Confidentiality

Information that is sent cannot be read by external parties.
. Correctness and Integrity

Information that is sent cannot be altered after it has left the sender and follows the agreed format.
. Non-repudiation

The party that created and sent the information cannot deny that the information in question was
created.

PKI (Public Key Infrastructure) is used in connection with the handling of the above security aspects.

Version 1.1 Page 16 of 25

19.05.2003

4.1 Security levels

In order to fulfil all, or just a few, of the security aspects described above, signatures and client
certificates can be combined. The permissible combinations are defined in four different security levels
where level 4 is the highest security and level 1 is the weakest security.

Common to all SSEK security levels is the fact that an SSL tunnel is set up, through which
confidentiality is maintained during the transmission and that the server authenticates itself with a server
certificate.

Further information concerning certificates and signatures can be found in section 4.3 Signing and 4.4
CA and certificates.

SSEK level SSL — with server | Signature Client certificate
certificate

4 Used Used Used

3 Used Used

2 Used Used

1 Used

Information on the SSEK security levels:

1. Gives confidentiality in connection with transmission and authentication of the server. Does not
give authentication of the client or non-repudiation because signatures and client certificates are
not used.

Appropriate level for public services.

2. Gives confidentiality in connection with transmission and authentication of both the server and the
client. Does not give non-repudiation because signatures are not used.

Appropriate level for services that are aimed at certain competent authorities but where the
information sent does not subsequently have to be used as evidence.

3. Gives confidentiality in connection with transmission, authentication of the server and
non-repudiation. Does not give authentication of the client because client certificates are not used.
Appropriate level for services where the sender does not need to be authenticated but where the
receiver has a need to demonstrate which organisation created the information that is received.

4. Gives confidentiality in connection with transmission, authentication of both the server and the
client and non-repudiation. Both signatures and client certificates are used.

Appropriate level for sensitive services that are aimed at certain competent authorities and where
the receiver has a need to demonstrate which organisation created the information that is received.

4.2 Secure communication

Both parties can initiate the communication. A party can do this by connecting up what is known as a
secure tunnel between itself and the other party. The secure tunnel MUST be created with SSL, for
which the protocol HTTPS (HTTP via SSL) is used. In this case, both parties are authenticated, i.e. both
client and server authentication using their certificates.

The tunnel MUST be encrypted with a secure key.
At least a 128-bit key must be used.

Version 1.1 Page 17 of 25

19.05.2003

4.3 Signing
A digital signature gives technical proof of the organisation that created certain information. As

messages are signed, the directives that are described in this document concerning signatures MUST be
followed.

Certificates MUST be used to create signatures.

4.4 CAs and certificates

The certificates that are required to create the signature and authenticate each party MUST be issued by
a CA (Certificate Authority) approved by both parties and be approved with regard to type and
procedures for the issuing of certificates. The certificates MUST follow the standard X.509 v3 and have
a sufficiently secure public key. At least a 1024-bit key applies to this.

The use of digital signatures is based on the trust that the communicating parties have in the CA that
issued the certificate.

4.5 Revoking of certificates

If the certificate can no longer be considered as trustworthy, the parties that are using the certificate
MUST be informed of this.

The party that uses a certificate for verifying an organisation’s identity and signatures SHOULD collect
the CRL (Certificate Revocation List) issued by the certificate’s CA and check that the certificate has
not been revoked each time the certificate is used. The revoking of the certificate by the certificate’s CA
MUST be carried out by the owner of the certificate. In connection with this revoking, the certificate is
placed in the CRL, which is regularly issued by the certificate’s CA, e.g. every 2 hours.

If there are no procedures or techniques in place for automatic revoking checks to retrieve and read a
CRL, “manual revoking” MUST be used. This is carried out by the party that wants to make a certificate
invalid contacting the person responsible on behalf of the other party as soon as possible, preferably by
telephone. This person will then remove the certificate so that it cannot be used. In this case, the
certificate MUST also be revoked by the certificate’s CA. This will therefore also work for those who
actually use the CRL that is issued.

If “manual revoking” is used between two communicating parties, procedures for the two parties MUST
be specified. Both parties must agree on the specified procedures.

If no procedure for revoking has been established, there is a greater risk of a fraudulent
party, which has stolen the certificate's private key, using the key for a long period of
time before notification that the certificate has been stolen and cannot be considered as
a secure identification of the other party.

Version 1.1 Page 18 of 25

19.05.2003

4.6 Approved CAs and certificate types

Telia eCommerce (issues certificates with Verisign as the CA) and Posten eSikerhet are currently
approved to issue certificates by parties who use this specification for their electronic communication.

Other types of certificate that are issued by approved CAs and used by the parties MUST be approved
for use by both parties. In this case, the requirement for the certificate type is that a sufficient validation
of the organisation’s identity is carried out in connection with the issuing of the certificate.

If an insecure CA or certificate is used without adequate validation of the organisation's
identity, there is a greater risk of a fraudulent organisation managing to pass itself off
as the other party in connection with communication. This could have important
consequences.

4.7 Handling private keys

Authentication and signing is carried out with a private key, which is linked to a certificate. The
authentication or signature is then used to prove that certain information has been created and sent by
the sending party. The private key MUST therefore be protected in a sufficiently secure manner so that
no unauthorised parties can steal the key.

If the private keys are not adequately protected, there is a greater risk of them being stolen.

A fraudulent party that has stolen a key can claim to be the organisation to which the key belongs and
act in its place. The consequences can therefore be considerable.

Version 1.1 Page 19 of 25

19.05.2003

5 Appendix A Standards

[TETF]

IETF (Internet Engineering Task Force), http://www.ietf.org/
[OASIS]

OASIS (Organisation for the Advancement of Structured Information Standards), http://www.oasis-open.org/
[PKI certificate]

Public Key Infrastructure certificate, http://www.ietf.org/html.charters/pkix-charter.html
[Posten]

Posten http://digitalid.postnet.se/
[SHA-1]

http://www.itl.nist.gov/fipspubs/fip180-1.htm
[SOAP]

W3C Note, "SOAP: Simple Object Access Protocol 1.1," 08 May 2000.

[SSL]

Secure Sockets Layer http://home.netscape.com/security/techbriefs/ssl.html
[WS-Security]

Web Services Security (WS-Security), Version 1.0 05 April 2002,

http://www-106.ibm.com/developerworks/webservices/library/ws-secure/
[W3C]

W3C (World Wide Web Consortium), http://www.w3.org/
[X.509 v3]

X.509 v3, http://www.ietf.org/rfc/rfc2459.txt
[XML]

Extensible Markup Language (XML) 1.0 (Second Edition),
W3C Recommendation 6 October 2000, http://www.w3.org/TR/2000/REC-xml-20001006
[XML-C14N]

Exclusive XML Canonicalization,

Version 1.0, W3C Recommendation 18 July 2002, http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/
[XML-Schemel]

W3C Recommendation, "XML Schema Part 1: Structures," 02 May 2001.
[XML-Scheme2]

W3C Recommendation, "XML Schema Part 2: Datatypes,"” 02 May 2001.
[XML Signature]

http://www.w3.org/Signature/

Version 1.1 Page 20 of 25

6 Appendix B Web Services Security

The following parts of the specification for WS-Security are used within SSEK.

Section

Clarification

4.2 Encoding Binary
Security Tokens

Only X.509 certificates are used.
X.509 certificate specified by using BinarySecurityToken:
<wsse:BinarySecurityToken

xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secex
¢
Id="myToken"
ValueType="wsse:X509v3"
EncodingType="wsse:Base64Binary">
MIEZzCCA9CgAwWIBAgZIQEmtJZcO...
</wsse:BinarySecurityToken>

4.3
SecurityTokenReference
Element

4.5 ds:Signature

19.05.2003

The following parts of the specification for Web Services Security Addendum are used within SSEK

Section

Clarification

3. ID References

3.2 1d Scheme

<x:myElement wsu:Id="ID1" xmlns:x="..."

xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"/>

4. Placement of X.509
Certificates

X.509 certificate specified by using BinarySecurityToken

Version 1.1

Page 21 of 25

7 Appendix C SSEK-specific schemes

Scheme for TxHeader:

<xsd:schema targetNamespace="http://schemas.ssek.org/txheader/2003-04-03/"

xmins:tns="http://schemas.ssek.org/txheader/2003-04-03/"

xmins:xsd="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="qualified" >
<xsd:element name="TxHeader">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Senderld">
<xsd:complexType>
<xsd:simpleContent>
<xsd:restriction base="xsd:anyType">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="256" />
</xsd:restriction>
</xsd:simpleType>
<xsd:attribute name="type" use="optional" default="CN">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="APP" />
<xsd:enumeration value="CN" />
<xsd:enumeration value="DN" />
<xsd:enumeration value="ORGNR" />
<xsd:maxLength value="16" />
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="Receiverld">
<xsd:complexType>
<xsd:simpleContent>
<xsd:restriction base="xsd:anyType">
<xsd:simpleType>
<xsd:restriction base="xsd:string"> <xsd:maxLength
value="256" />
</xsd:restriction>
</xsd:simpleType>
<xsd:attribute name="type" use="optional" default="CN">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="APP" />
<xsd:enumeration value="CN" />
<xsd:enumeration value="DN" />
<xsd:enumeration value="ORGNR" />
<xsd:maxLength value="16" />
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="TxId" minOccurs="0">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:length value="36" />

Version 1.1

19.05.2003

Page 22 of 25

19.05.2003

</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Timestamp" type="xsd:dateTime" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Scheme for receipt:

<xsd:schema targetNamespace="http://schemas.ssek.org/receipt/2003-04-03/"
xmins:tns="http://schemas.ssek.org/receipt/2003-04-03/"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified">
<xsd:element nhame="Receipt">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ResponseCode" type="xsd:string" />
<xsd:element name="ResponseMessage" type="xsd:string" minOccurs="0" />
<xsd:element name="RequestSignatureValue" type="xsd:string" minOccurs="0" />
<xsd:any minOccurs="0" maxOccurs="unbounded" namespace="##any"
processContents="lax" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Version 1.1 Page 23 of 25

8 Appendix D Fault codes

Definitions of the fault codes that can be inserted in fault messages. The values that should be set in
Faultstring and Detail are not defined here. These can be set to arbitrary values that are agreed between
the communicating parties. A scheme for soap fault is shown below:

http:/schemas.xml.org/soap/envelope/

8.1 Faults concerning the document
Fault code Description
VersionMismatch An unknown version of soap was specified

MustUnderstand. TxHeader

Incorrect format for TxHeader

MustUnderstand.Security

Incorrect format for security header

Client.InvalidXml

Incorrect format for message

Client. WebService.Unknown

The combination of TxHeader, MessageName
and nsuri for the message is incorrect.

Client. TxHeader.Senderld.Unknown

Client. TxHeader.Receiverld.Unknown

Client. TxHeader.Timestamp.Invalid

8.2 Faults concerning the transaction ID

Fault code

Description

Client. TxHeader.TxId.Missing

TxId has not been specified

Client. TxHeader.TxId.Unknown

Client. TxHeader.TxId.Invalid

Incorrect format for TxId

Client.TxHeader.TxId.Duplicate

TxId is not unique

Client. TxHeader. TxId.NotAllowed

TxId must not be specified for this service

8.3 Faults on the server side

Fault code

Description

Server.MessageNotProcessed

Internal fault

Server.WebService.Unavailable

The service is closed

Server.WebService.Unsupported

The service is not supported by the receiver

8.4 Logical faults in transaction data

Fault code

Description

Client.Receivername.arbitrary
faultcode

Faults in business data concerning business
logic, e.g. salary too high, can be notified in
this way, e.g. “Client.Skandia.
InvalidSalary”

Version 1.1

19.05.2003

Page 24 of 25

8.5 Faults concerning certificates or signatures

Fault code

Description

Client.UnregisteredClientCertificate

DN in http header in client certificate does not
agree with the saved DN.

Client.InvalidSecurityToken

The certificate is invalid with regard to the
validity period.

Client.InvalidSecurityToken

The certificate has been revoked

Client.Failed Authentication

The specified security token could not be
authenticated or authorised.

Client.UnsupportedSecurityToken

An unknown security token was specified, not
X509

Client.UnregisteredSecurityToken

DN in signaturcert does not agree with the
saved DN.

Client.Unsupported Algorithm

An unknown algorithm for signature or
encryption was specified

Client.InvalidSecurity

A fault was discovered in connection with the
processing of the <Security> header

Client.InvalidSecurityToken

Client.FailedCheck

Client.SecurityTokenUnavailable

8.6 Other faults which are not reported via SOAP fault

Fault code Description

http Server unavailable

TimeOut The client cannot receive a response
Version 1.1

19.05.2003

Page 25 of 25

